Siemens Gasification Project Update and Lessons Learned

Harry Morehead
Director, Gasification and IGCC Sales and Marketing, Americas
Agenda

Gasification Project Update and Lessons Learned
- Shenhua Ningxia Coal Group, NCPP I Project
- Shanxi Lanhua, Jincheng Project
- CPI, Coal to SNG Project
- Shenhua, CTL Project
- MidAmerica C2L, Coal to Methanol Project

IGCC Project Update
- Huaneng GreenGen Co. Ltd., Tianjin IGCC Project
- Mississippi Power, Plant Ratcliffe
- Summit Power, Texas Clean Energy Project

Siemens Technology Update

Conclusions
Siemens Gasification Landscape

9 SFG-500 gasifiers shipped or installed for 3 projects,
32 SFG-500 gasifiers on order
NCPP Project: Ningxia Coal to Polypropylene
5 x SFG-500 / 540,000 Nm³/h (H₂+CO) / dry coal capacity 5 x 85 t/h

Sub-bituminous Coal
- Ash: 7-28 wt%
- Moisture: < 6 wt%

Start Erection (SIEMENS Proprietary Equipment) January 2009
Mechanical Completion August 2010
Commissioning period for all 5 gasifiers October ‘10 – April ’11
Pre-commercial operation Start April 2011
Performance tests completed September 2011

Site area: 192 hectares or 474 acres
NCPP I Project
Gasifier Performance

Operational Highlights

- 4 lines in stable, parallel operation
- More than 1,500,000 tons of coal gasified
- More than 5,000 t/d methanol production
- Has accommodated coals with a ash content that typically varies between 10% and 20%
- All gasifier performance guarantees achieved and exceeded

Performance Summary

- Gasification Temperature Range: 1350°C to 1750°C (2,462°F to 3,182°F)
- Carbon conversion 99%
- CH₄ < 0.1% (Vol)
- H₂+CO > 90%
- No heavy hydrocarbon produced
- Cold gas efficiency ~ 80% (depends on coal)
- Low oxygen and coal consumption
Shanxi Lanhua Coal Chemical Co., Ltd.
Jincheng Project, PR China

Plant Output
- 300,000 t/yr Ammonia
- 520,000 t/yr Urea

Coal
- Tangan Coal (Anthracite)
 (FT ~ 1530°C, ash content ~16%)

Gasification Island Configuration
- 1 gasifier in operation
- 1 gasifier standby

Gasifier Operating Pressure
- 4.0 MPa(g) (580 psig)

Siemens Scope
- Engineering and Gasification Testing
- Equipment Supply
 - Internals for Lock Hoppers
 - Feeder Vessels
 - 2 x SFG-500 gasifiers
 - Burners
 - Gasifier Control System
 - Dust Measurement
- Technical Field Assistance
- Gasification Island Process License

Status
- Agreement with customer extended
- Commissioning mid 2015

Project located near Jincheng City, in the southern part of province Shanxi
CPI Yinan
Coal to SNG Project

Client & Project
Client: CPI - China Power Investment Corporation
One of first major utilities in China to build coal to SNG
Project: First phase (2 bill Nm³/a) of a 6 bill Nm³/a SNG project
Location: Yili City Xinjiang Province, PR China

Siemens Scope
- PDP / BEDP (supported by Design Institute ECEC)
- 8 x SFG-500 standard gasifier and burners
- 8 x Feeder vessels
- I&C system for burner management
- Dense flow coal measurement devices and feeding internals
- Training, Technical Field Assistance

Schedule
- Contract signed: July 2011
- BEDP delivered: April 2012
- Gasifier manufacturing started: June 2012
- Expected COD: Late 2015
Shenhua, CTL Project

Status

- 24 SFG-500 gasifiers ordered
- Project will produce 4 million metric t/y of Diesel & Naphtha
- Siemens engineering completed
- Siemens equipment on order
- Start of commissioning expected late 2016
MidAmerica C2L, KY Coal to Methanol Project

Status

- Selected a more profitable product, Methanol
- Moved project to new site outside of Paducah, KY
- Worked with SK E&C to confirm EPC price for plant
- Currently seeking equity and debt financing for project

Cycle Diagram (provided by MidAmerica C2L)
Agenda

Gasification Project Update and Lessons Learned
- Shenhua Ningxia Coal Group, NCPP I Project
- Shanxi Lanhua, Jincheng Project
- CPI, Coal to SNG Project
- MidAmerica C2L, Coal to Methanol Project

IGCC Project Update
- Huaneng Greengen Co. Ltd., Tianjin IGCC Project
- Mississippi Power, Plant Ratcliffe
- Summit Power, Texas Clean Energy Project

Siemens Technology Update

Conclusions
Huaneng Greengen Co. Ltd.
Tianjin IGCC Project

Plant Output
- 250 MWe

Siemens scope
- 1 x SGT5-2000E gas turbine and auxiliaries

Gas turbine main fuel:
- Coal-based syngas diluted with N₂

Gas turbine secondary fuel:
- Fuel oil

GT-G Status
- Gas turbine first fire on secondary fuel in October 2011
- GT-G successfully reached first syngas operation in September 2012, commission of the plant continues as planned
Mississippi Power
Plant Ratcliffe IGCC Project

- Siemens shipped 2 SGT6-5000F Gas Turbine Generators to site in 2012
 - Gas turbines will operate on high H₂ syngas as the primary fuel and natural gas as the backup/startup fuel
 - Gas turbines include capability to extract air for integration with the air-blown gasifier
- Gas Turbine Generators currently being installed at site

Site pictures courtesy of Mississippi Power
Summit Power Group
Texas Clean Energy Project

Plant Output
- 400 MW_e
- 710,000 t/y Ammonia/Urea
- 2.5 M t/y CO₂ for EOR

Siemens Scope
- 2 X SFG-500 gasifiers
- SGCC6-5000F 1X1 power block operating on high H₂ syngas with natural gas as the startup/backup fuel
- Various plant compression solutions: CO₂, O₂, N₂, others
- Plant operation and maintenance services (JV with Linde)
Agenda

Gasification Project Update and Lessons Learned
- Shenhua Ningxia Coal Group, NCPP I Project
- Shanxi Lanhua, Jincheng Project
- CPI, Coal to SNG Project
- MidAmerica C2L, Coal to Methanol Project

IGCC Project Update
- Huaneng Greengen Co. Ltd., Tianjin IGCC Project
- Mississippi Power, Plant Ratcliffe
- Summit Power, Texas Clean Energy Project

Siemens Technology Update

Conclusions
R&D Improves Gasification Economics

- Developed optical 3-D high precision measurement of Vresova’s refractory lined reactor to more accurately determine refractory remaining lifetime and outage planning.

- Developed advanced CFD calculation tool for coal specific gasifier design work resulting in:
 - Maximized throughput
 - Lower operating cost by minimizing possible O_2 consumption
 - Optimized gas cleaning and black water treatment systems design
OEM Service Programs Play a Key Role in Improving Long Term Gasification Plant Availability

- Identification of possible failures with impacts on reliability and availability
- FMEA for single faults
- FTA for failure correlations
- Markov models to describe consecutive failures
- Simulative approaches for more complex scenarios and complete poly-generation sites

- Monitors, analyzes and diagnoses plant operating conditions for follow-up action
 - Data acquisition / processing / analysis
 - OEM expert knowledge network
 - Quick user support by web-based expert knowledge software solution
 - Includes development and implementation of condition-based strategies and optimization of plant operations
 - Flame spectrometry for gasifier monitoring
 - Reactor vessel shape measurements

Helps improve reliability, availability, lifetime asset management, and proactive maintenance planning
OEM Support for Operating Gasification Plants

- Siemens Gasifier Component Service Facility opened in 2012
- Located at Siemens turbine works in Huludao, China
- Supports operating and future Siemens gasifiers in China
Siemens – DOE Advanced H₂ Turbine Program Update

PHASE 1 and PHASE 2 Program Goals: ↑ 3-5% pt. in CC efficiency; 2 ppm NOₓ; ↓ 20-30% Plant Cost

Program is On-Track

Siemens DOE H₂ Program Update: Technology Development Path to 2ppm Goal

Advanced High Temperature Combustor + Novel Selective Catalytic Reduction System + Advanced Emissions Sensors = 2 PPM
- Higher Efficiency
- Cost Competitive
Agenda

Gasification Project Update and Lessons Learned
- Shenhua Ningxia Coal Group, NCPP I Project
- Shanxi Lanhua, Jincheng Project
- CPI, Coal to SNG Project
- MidAmerica C2L, Coal to Methanol Project

IGCC Project Update
- Huaneng Greengen Co. Ltd., Tianjin IGCC Project
- Mississippi Power, Plant Ratcliffe
- Summit Power, Texas Clean Energy Project

Siemens Technology Update

Conclusions
Conclusions

Global demand for gasification is still strong in areas where natural gas prices are high

- Chemicals / SNG
- Transportation liquids

Lessons learned are helping to improve operating flexibility and reliability

Better technology will provide broader feedstock options and improved plant economics

- Better gasification technologies being developed based on lessons learned and R&D
- Today’s F class turbines are ready for high H₂ syngas and new technologies are being developed for the next generation of IGCC gas turbines
- New services and technologies to optimize life cycle operating cost
Disclaimer

This document contains forward-looking statements and information – that is, statements related to future, not past, events. These statements may be identified either orally or in writing by words as “expects”, “anticipates”, “intends”, “plans”, “believes”, “seeks”, “estimates”, “will” or words of similar meaning. Such statements are based on our current expectations and certain assumptions, and are, therefore, subject to certain risks and uncertainties. A variety of factors, many of which are beyond Siemens’ control, affect its operations, performance, business strategy and results and could cause the actual results, performance or achievements of Siemens worldwide to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. For us, particular uncertainties arise, among others, from changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products or technologies by other companies, lack of acceptance of new products or services by customers targeted by Siemens worldwide, changes in business strategy and various other factors. More detailed information about certain of these factors is contained in Siemens’ filings with the SEC, which are available on the Siemens website, www.siemens.com and on the SEC’s website, www.sec.gov. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in the relevant forward-looking statement as anticipated, believed, estimated, expected, intended, planned or projected. Siemens does not intend or assume any obligation to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, it's affiliates or their respective owners.